CE 329 Fall 2015

Class 23 Worksheet

In Example 20.2, the operation of a batch reactor was analyzed. Specifically, a coolant flow rate of 0.2 kg min^{-1} was selected to maximize the net rate of production of $\mathrm{B}\left(0.0153 \mathrm{~mol}_{\mathrm{min}}{ }^{-1}\right.$ including turnaround time) via reaction (1). Suppose that reactor is converted to a CSTR that operates with a space time equal to the total processing time of the two steps in the batch reactor operational protocol (63.8 min). That is, the feed to the CSTR has the same composition and temperature as the initial charge to the batch reactor (a 2 M solution of A at $23^{\circ} \mathrm{C}$), and the $20^{\circ} \mathrm{C}$ cooling water flows into the jacket at a rate of $0.2 \mathrm{~kg} \mathrm{~min}^{-1}$. What will the final steady state temperature and outlet molar flow rate of B equal?
The rate expression for reaction (1) is given in equation (2). The heat of reaction (1) may be taken to be constant and equal to $-22,200 \mathrm{cal} \mathrm{mol}^{-1}$. The heat capacity of the reacting solution is approximately constant and equal to 440 cal $\mathrm{L}^{-1} \mathrm{~K}^{-1}$, and its density is constant. The reaction volume is 4 L , and the jacket volume is 0.5 L with a heat transfer area of $0.6 \mathrm{ft}^{2}$ and a heat transfer coefficient of $1.13 \times 10^{4} \mathrm{cal}$ $\mathrm{ft}^{-2} \mathrm{~h}^{-1} \mathrm{~K}^{-1}$. The cooling water may be taken to have a constant density of $1 \mathrm{~g} \mathrm{~cm}^{-3}$ and a constant heat capacity of $1 \mathrm{cal} \mathrm{g}^{-1} \mathrm{~K}^{-1}$.

$$
\begin{align*}
& \mathrm{A} \rightarrow \mathrm{~B} \tag{1}\\
& r_{1}=\left(2.59 \times 10^{9} \mathrm{~min}^{-1}\right) \exp \left(\frac{-16500 \mathrm{cal} \mathrm{~mol}^{-1}}{R T}\right) C_{A} \tag{2}
\end{align*}
$$

Read through the problem statement and determine the type of reactor being used, whether it operates transiently or at steady state, whether it is heated/cooled, isothermal or adiabatic and (if the reactor is a PFR) whether there is a significant pressure drop

Read through the problem statement a second time and (a) assign each quantity given in the problem statement to the appropriate variable symbol (b) if all of the given quantities are intensive, select a value for one extensive variable as the basis for your calculations and (c) determine what quantities the problem asks for and assign appropriate variable symbols to them

Write a mole balance equation for each reactant and product; expand all summations and continuous products, and eliminate all zero-valued and negligible terms

Write an energy balance design equation (unless the reactor is isothermal and the problem does not ask any questions related to heat transfer); expand all summations and continuous products, and eliminate all zero-valued and negligible terms. If information about the heat transfer fluid, beyond its temperature, is provided, write an energy balance on the heat transfer fluid

If the reactor is a PFR and there is a significant pressure drop, write a momentum balance; expand all summations and continuous products, and eliminate all zero-valued and negligible terms

Identify the type of the design equations if they are algebraic, identify the unknowns
the number of unknowns must equal the number of equations if they are differential, identify the independent and dependent variables
if the number of dependent variables is greater than the number of equations, choose one dependent variable and express it and its derivatives in terms of the remaining dependent variables

Determine what you will need to provide in order to solve the design equations numerically and show how to do so

- For algebraic equations written in the form $0=f(\underline{x})$ you must provide a guess for \underline{x} and code that evaluates f given \underline{x}
- For initial value ordinary differential equations written in the form $\frac{d}{d x} \underline{y}=\underline{f}(x, \underline{y})$ you must provide initial values of x and $\underline{\nu}$, a final value for either x or one element of \underline{y}, and code that evaluates f given x and \underline{y}
- For boundary value differential equations that do no have a singularity written in the form $\frac{d}{d x} \underline{y}=\underline{f}(x, \underline{y})$ you must provide the lower and upper limits of x, boundary conditions that must be satisfied for each dependent variable and code that evaluates f given x and y

After the design equations have been solved numerically, yielding values for the unknowns (algebraic equations) or the independent and dependent variables (differential equations), use the results to calculate any other quantities or plots that the problem asked for

